Matrix-variate logistic regression with measurement error
Junhan Fang and
Grace Y Yi
Biometrika, 2021, vol. 108, issue 1, 83-97
Abstract:
SummaryMeasurement error in covariates has been extensively studied in many conventional regression settings where covariate information is typically expressed in a vector form. However, there has been little work on error-prone matrix-variate data, which commonly arise from studies with imaging, spatial-temporal structures, etc. We consider analysis of error-contaminated matrix-variate data. We particularly focus on matrix-variate logistic measurement error models. We examine the biases induced from naive analysis which ignores measurement error in matrix-variate data. Two measurement error correction methods are developed to adjust for measurement error effects. The proposed methods are justified both theoretically and empirically. We analyse an electroencephalography dataset with the proposed methods.
Keywords: Logistic regression; Matrix-variate data; Measurement error; Sufficient statistics (search for similar items in EconPapers)
Date: 2021
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asaa056 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:108:y:2021:i:1:p:83-97.
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().