Specification tests for covariance structures in high-dimensional statistical models
Corrections to LRT on large-dimensional covariance matrix by RMT
X Guo and
C Y Tang
Biometrika, 2021, vol. 108, issue 2, 335-351
Abstract:
SummaryWe consider testing the covariance structure in statistical models. We focus on developing such tests when the random vectors of interest are not directly observable and have to be derived via estimated models. Additionally, the covariance specification may involve extra nuisance parameters which also need to be estimated. In a generic additive model setting, we develop and investigate test statistics based on the maximum discrepancy measure calculated from the residuals. To approximate the distributions of the test statistics under the null hypothesis, new multiplier bootstrap procedures with dedicated adjustments that incorporate the model and nuisance parameter estimation errors are proposed. Our theoretical development elucidates the impact due to the estimation errors with high-dimensional data and demonstrates the validity of our tests. Simulations and real data examples confirm our theory and demonstrate the performance of the proposed tests.
Keywords: Covariance matrix; High-dimensional hypothesis testing; Latent variable; Multiplier bootstrap; Nuisance parameter estimation (search for similar items in EconPapers)
Date: 2021
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asaa073 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:108:y:2021:i:2:p:335-351.
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().