On the use of a penalized quasilikelihood information criterion for generalized linear mixed models
A new look at the statistical model identification
Francis K C Hui
Biometrika, 2021, vol. 108, issue 2, 353-365
Abstract:
SummaryInformation criteria are commonly used for joint fixed and random effects selection in mixed models. While information criteria are straightforward to implement, a major difficulty in applying them is that they are typically based on maximum likelihood estimates, but calculating such estimates for one candidate mixed model, let alone multiple models, presents a major computational challenge. To overcome this hurdle, we study penalized quasilikelihood estimation and use it as the basis for performing fast joint selection. Under a general framework, we show that penalized quasilikelihood estimation produces consistent estimates of the true parameters. We then propose a new penalized quasilikelihood information criterion whose distinguishing feature is the way it accounts for model complexity in the random effects, since penalized quasilikelihood estimation effectively treats the random effects as fixed. We demonstrate that the criterion asymptotically identifies the true set of important fixed and random effects. Simulations show that the quasilikelihood information criterion performs competitively with and sometimes better than common maximum likelihood information criteria for joint selection, while offering substantial reductions in computation time.
Keywords: Fixed effect; Model selection; Penalized quasilikelihood; Random effect; Variable selection (search for similar items in EconPapers)
Date: 2021
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asaa069 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:108:y:2021:i:2:p:353-365.
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().