Consistency guarantees for greedy permutation-based causal inference algorithms
Ordering-based causal structure learning in the presence of latent variables
L Solus,
Y Wang and
C Uhler
Biometrika, 2021, vol. 108, issue 4, 795-814
Abstract:
SummaryDirected acyclic graphical models are widely used to represent complex causal systems. Since the basic task of learning such a model from data is NP-hard, a standard approach is greedy search over the space of directed acyclic graphs or Markov equivalence classes of directed acyclic graphs. As the space of directed acyclic graphs onnodes and the associated space of Markov equivalence classes are both much larger than the space of permutations, it is desirable to consider permutation-based greedy searches. Here, we provide the first consistency guarantees, both uniform and high dimensional, of a greedy permutation-based search. This search corresponds to a simplex-like algorithm operating over the edge-graph of a subpolytope of the permutohedron, called a directed acyclic graph associahedron. Every vertex in this polytope is associated with a directed acyclic graph, and hence with a collection of permutations that are consistent with the directed acyclic graph ordering. A walk is performed on the edges of the polytope maximizing the sparsity of the associated directed acyclic graphs. We show via simulated and real data that this permutation search is competitive with current approaches.
Keywords: Bayesian network; Causal inference; Directed acyclic graph; DAG associahedron; Faithfulness; Gaussian graphical model; Generalized permutohedron; Greedy search; Pointwise and high-dimensional consistency (search for similar items in EconPapers)
Date: 2021
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asaa104 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:108:y:2021:i:4:p:795-814.
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().