Estimation of local treatment effects under the binary instrumental variable model
Bootstrap tests for distributional treatment effects in instrumental variable models
Linbo Wang,
Yuexia Zhang,
Thomas S Richardson and
James M Robins
Biometrika, 2021, vol. 108, issue 4, 881-894
Abstract:
SummaryInstrumental variables are widely used to deal with unmeasured confounding in observational studies and imperfect randomized controlled trials. In these studies, researchers often target the so-called local average treatment effect as it is identifiable under mild conditions. In this paper we consider estimation of the local average treatment effect under the binary instrumental variable model. We discuss the challenges of causal estimation with a binary outcome and show that, surprisingly, it can be more difficult than in the case with a continuous outcome. We propose novel modelling and estimation procedures that improve upon existing proposals in terms of model congeniality, interpretability, robustness and efficiency. Our approach is illustrated via simulation studies and a real data analysis.
Keywords: Causal inference; Model compatibility; Semiparametric efficiency; Variation independence (search for similar items in EconPapers)
Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asab003 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:108:y:2021:i:4:p:881-894.
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().