Interpoint-ranking sign covariance for the test of independence
Prediction by supervised principal components
Haeun Moon and
Kehui Chen
Biometrika, 2022, vol. 109, issue 1, 165-179
Abstract:
SummaryWe generalize the sign covariance introduced by Bergsma & Dassios (2014) to multivariate random variables and beyond. The new interpoint-ranking sign covariance is applicable to general types of random objects as long as a meaningful similarity measure can be defined, and it is shown to be zero if and only if the two random variables are independent. The test statistic is a -statistic, whose large-sample behaviour guarantees that the proposed test is consistent against general types of alternatives. Numerical experiments and data analyses demonstrate the superior empirical performance of the proposed method.
Keywords: Consistency; Independence test; Interpoint distance; Nonparametric test; Sign covariance (search for similar items in EconPapers)
Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asab011 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:109:y:2022:i:1:p:165-179.
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().