More for less: predicting and maximizing genomic variant discovery via Bayesian nonparametrics
A global reference for human genetic variation
Lorenzo Masoero,
Federico Camerlenghi,
Stefano Favaro and
Tamara Broderick
Biometrika, 2022, vol. 109, issue 1, 17-32
Abstract:
SummaryWhile the cost of sequencing genomes has decreased dramatically in recent years, this expense often remains nontrivial. Under a fixed budget, scientists face a natural trade-off between quantity and quality: spending resources to sequence a greater number of genomes or spending resources to sequence genomes with increased accuracy. Our goal is to find the optimal allocation of resources between quantity and quality. Optimizing resource allocation promises to reveal as many new variations in the genome as possible. We introduce a Bayesian nonparametric methodology to predict the number of new variants in a follow-up study based on a pilot study. When experimental conditions are kept constant between the pilot and follow-up, we find that our prediction is competitive with the best existing methods. Unlike current methods, though, our new method allows practitioners to change experimental conditions between the pilot and the follow-up. We demonstrate how this distinction allows our method to be used for more realistic predictions and for optimal allocation of a fixed budget between quality and quantity. We validate our method on cancer and human genomics data.
Keywords: Bayesian nonparametric inference; New genomic variants discovery; Optimal experimental design (search for similar items in EconPapers)
Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asab012 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:109:y:2022:i:1:p:17-32.
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().