Statistical inference on shape and size indexes for counting processes
Rank estimation of a transformation model with observed truncation
Yifei Sun,
Sy Han Chiou,
Kieren A Marr and
Chiung-Yu Huang
Biometrika, 2022, vol. 109, issue 1, 195-208
Abstract:
SummarySingle-index models have gained increased popularity in time-to-event analysis owing to their model flexibility and advantage in dimension reduction. We propose a semiparametric framework for the rate function of a recurrent event counting process by modelling its size and shape components with single-index models. With additional monotone constraints on the two link functions for the size and shape components, the proposed model possesses the desired directional interpretability of covariate effects and encompasses many commonly used models as special cases. To tackle the analytical challenges arising from leaving the two link functions unspecified, we develop a two-step rank-based estimation procedure to estimate the regression parameters with or without informative censoring. The proposed estimators are asymptotically normal, with a root- convergence rate. To guide model selection, we develop hypothesis testing procedures for checking shape and size independence. Simulation studies and a data example on a hematopoietic stem cell transplantation study are presented to illustrate the proposed methodology.
Keywords: Dimension reduction; Informative censoring; Kernel smoothing; Rate function; Recurrent event (search for similar items in EconPapers)
Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asab008 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:109:y:2022:i:1:p:195-208.
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().