Distributed inference for the extreme value index
Statistics of heteroscedastic extremes
Liujun Chen,
Deyuan Li and
Chen Zhou
Biometrika, 2022, vol. 109, issue 1, 257-264
Abstract:
SummaryIn this paper we investigate a divide-and-conquer algorithm for estimating the extreme value index when data are stored in multiple machines. The oracle property of such an algorithm based on extreme value methods is not guaranteed by the general theory of distributed inference. We propose a distributed Hill estimator and establish its asymptotic theories. We consider various cases where the number of observations involved in each machine can be either homogeneous or heterogeneous, and either fixed or varying according to the total sample size. In each case we provide a sufficient, sometimes also necessary, condition under which the oracle property holds.
Keywords: Distributed Hill estimator; Distributed inference; Extreme value index (search for similar items in EconPapers)
Date: 2022
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asab001 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:109:y:2022:i:1:p:257-264.
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().