Efficient adjustment sets in causal graphical models with hidden variables
Double/debiased machine learning for treatment and structural parameters
E Smucler,
F Sapienza and
Andrea Rotnitzky
Biometrika, 2022, vol. 109, issue 1, 49-65
Abstract:
SummaryWe study the selection of adjustment sets for estimating the interventional mean under a point exposure dynamic treatment regime, that is, a treatment rule that depends on the subject’s covariates. We assume a nonparametric causal graphical model with, possibly, hidden variables and at least one adjustment set comprised of observable variables. We provide the definition of a valid adjustment set for a point exposure dynamic treatment regime, which generalizes the existing definition for a static intervention. We show that there exists an adjustment set, referred to as optimal minimal, that yields the nonparametric estimator of the interventional mean with the smallest asymptotic variance among those that are based on observable minimal adjustment sets. An observable minimal adjustment set is a valid adjustment set such that all its variables are observable and the removal of any of its variables destroys its validity. We provide similar optimality results for the class of observable minimum adjustment sets, that is, valid observable adjustment sets of minimum cardinality among the observable adjustment sets. Moreover, we show that if either no variables are hidden or if all the observable variables are ancestors of either treatment, outcome or the variables that are used to decide treatment, a globally optimal adjustment set exists. We provide polynomial-time algorithms to compute the globally optimal, optimal minimal and optimal minimum adjustment sets. Because static interventions can be viewed as a special case of dynamic regimes, all our results also apply for static interventions.
Keywords: Adjustment set; Backdoor criterion; Bayesian network; Causal graphical model; Dynamic treatment regime; Off-policy evaluation (search for similar items in EconPapers)
Date: 2022
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asab018 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:109:y:2022:i:1:p:49-65.
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().