EconPapers    
Economics at your fingertips  
 

Estimation of genetic correlation with summary association statistics

A global reference for human genetic variation

Jianqiao Wang and Hongzhe Li

Biometrika, 2022, vol. 109, issue 2, 421-438

Abstract: SummaryGenome-wide association studies have identified thousands of genetic variants that are associated with complex traits. Many complex traits are shown to share genetic etiology. Although various genetic correlation measures and their estimators have been developed, rigorous statistical analysis of their properties, including their robustness to model assumptions, is still lacking. We develop a method of moments estimator of genetic correlation between two traits in the framework of high-dimensional linear models. We show that the genetic correlation defined based on the regression coefficients and the linkage disequilibrium matrix can be decomposed into both the pleiotropic effects and correlations due to linkage disequilibrium between the causal loci of the two traits. The proposed estimator can be computed from summary association statistics when the raw genotype data are not available. Theoretical properties of the estimator in terms of consistency and asymptotic normality are provided. The proposed estimator is closely related to the estimator from the linkage disequilibrium score regression. However, our analysis reveals that the linkage disequilibrium score regression method does not make full use of the linkage disequilibrium information, and its jackknife variance estimate can be biased when the model assumptions are violated. Simulations and real data analysis results show that the proposed estimator is more robust and has better interpretability than the linkage disequilibrium score regression method under different genetic architectures.

Keywords: Co-heritability; Linkage disequilibrium; Method of moments; Precision matrix estimation (search for similar items in EconPapers)
Date: 2022
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asab030 (application/pdf)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:109:y:2022:i:2:p:421-438.

Ordering information: This journal article can be ordered from
https://academic.oup.com/journals

Access Statistics for this article

Biometrika is currently edited by Paul Fearnhead

More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().

 
Page updated 2025-03-19
Handle: RePEc:oup:biomet:v:109:y:2022:i:2:p:421-438.