Partial separability and functional graphical models for multivariate Gaussian processes
Tests for separability in nonparametric covariance operators of random surfaces
J Zapata,
S Y Oh and
A Petersen
Biometrika, 2022, vol. 109, issue 3, 665-681
Abstract:
SummaryThe covariance structure of multivariate functional data can be highly complex, especially if the multivariate dimension is large, making extensions of statistical methods for standard multivariate data to the functional data setting challenging. For example, Gaussian graphical models have recently been extended to the setting of multivariate functional data by applying multivariate methods to the coefficients of truncated basis expansions. However, compared with multivariate data, a key difficulty is that the covariance operator is compact and thus not invertible. This paper addresses the general problem of covariance modelling for multivariate functional data, and functional Gaussian graphical models in particular. As a first step, a new notion of separability for the covariance operator of multivariate functional data is proposed, termed partial separability, leading to a novel Karhunen–Loève-type expansion for such data. Next, the partial separability structure is shown to be particularly useful in providing a well-defined functional Gaussian graphical model that can be identified with a sequence of finite-dimensional graphical models, each of identical fixed dimension. This motivates a simple and efficient estimation procedure through application of the joint graphical lasso. Empirical performance of the proposed method for graphical model estimation is assessed through simulation and analysis of functional brain connectivity during a motor task.
Keywords: Functional brain connectivity; Functional data; Inverse covariance; Separability (search for similar items in EconPapers)
Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asab046 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:109:y:2022:i:3:p:665-681.
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().