EconPapers    
Economics at your fingertips  
 

Local linear graphon estimation using covariates

Representations for partially exchangeable arrays of random variables

S Chandna, S C Olhede and P J Wolfe

Biometrika, 2022, vol. 109, issue 3, 721-734

Abstract: SummaryWe consider local linear estimation of the graphon function, which determines probabilities of pairwise edges between nodes in an unlabelled network. Real-world networks are typically characterized by node heterogeneity, with different nodes exhibiting different degrees of interaction. Existing approaches to graphon estimation are limited to local constant approximations, and are not designed to estimate heterogeneity across the full network. In this paper, we show how continuous node covariates can be employed to estimate heterogeneity in the network via a local linear graphon estimator. We derive the bias and variance of an oracle-based local linear graphon estimator, and thus obtain the mean integrated squared error optimal bandwidth rule. We also provide a plug-in bandwidth selection procedure that makes local linear estimation for unlabelled networks practically feasible. The finite-sample performance of our approach is investigated in a simulation study, and the method is applied to a school friendship network and an email network to illustrate its advantages over existing methods.

Keywords: Exchangeable network; Graph limit; Graphon estimation; Nonparametric regression (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asab057 (application/pdf)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:109:y:2022:i:3:p:721-734.

Ordering information: This journal article can be ordered from
https://academic.oup.com/journals

Access Statistics for this article

Biometrika is currently edited by Paul Fearnhead

More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().

 
Page updated 2025-03-19
Handle: RePEc:oup:biomet:v:109:y:2022:i:3:p:721-734.