Determining the number of factors in high-dimensional generalized latent factor models
Eigenvalue ratio test for the number of factors
Y Chen and
X Li
Biometrika, 2022, vol. 109, issue 3, 769-782
Abstract:
SummaryAs a generalization of the classical linear factor model, generalized latent factor models are useful for analysing multivariate data of different types, including binary choices and counts. This paper proposes an information criterion to determine the number of factors in generalized latent factor models. The consistency of the proposed information criterion is established under a high-dimensional setting, where both the sample size and the number of manifest variables grow to infinity, and data may have many missing values. An error bound is established for the parameter estimates, which plays an important role in establishing the consistency of the proposed information criterion. This error bound improves several existing results and may be of independent theoretical interest. We evaluate the proposed method by a simulation study and an application to Eysenck’s personality questionnaire.
Keywords: Generalized latent factor model; High-dimensional data; Information criteria; Joint maximum likelihood estimator; Selection consistency (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asab044 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:109:y:2022:i:3:p:769-782.
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().