Uniqueness and global optimality of the maximum likelihood estimator for the generalized extreme value distribution
Reference analysis
Likun Zhang and
Benjamin A Shaby
Biometrika, 2022, vol. 109, issue 3, 853-864
Abstract:
SummaryThe three-parameter generalized extreme value distribution arises from classical univariate extreme value theory, and is in common use for analysing the far tail of observed phenomena, yet important asymptotic properties of likelihood-based estimation under this standard model have not been established. In this paper we prove that the maximum likelihood estimator is global and unique. An interesting secondary result entails the uniform consistency of a class of limit relations in a tight neighbourhood of the true shape parameter.
Keywords: Block maximum, Convergence rate, Global maximum, Law of large numbers, Profile likelihood; Support (search for similar items in EconPapers)
Date: 2022
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asab043 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:109:y:2022:i:3:p:853-864.
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().