EconPapers    
Economics at your fingertips  
 

Mean decrease accuracy for random forests: inconsistency, and a practical solution via the Sobol-MDA

Explaining individual predictions when features are dependent: more accurate approximations to Shapley values

Clément Bénard, Sébastien Da Veiga and Erwan Scornet

Biometrika, 2022, vol. 109, issue 4, 881-900

Abstract: SummaryVariable importance measures are the main tools used to analyse the black-box mechanisms of random forests. Although the mean decrease accuracy is widely accepted as the most efficient variable importance measure for random forests, little is known about its statistical properties. In fact, the definition of mean decrease accuracy varies across the main random forest software. In this article, our objective is to rigorously analyse the behaviour of the main mean decrease accuracy implementations. Consequently, we mathematically formalize the various implemented mean decrease accuracy algorithms, and then establish their limits when the sample size increases. This asymptotic analysis reveals that these mean decrease accuracy versions differ as importance measures, since they converge towards different quantities. More importantly, we break down these limits into three components: the first two terms are related to Sobol indices, which are well-defined measures of a covariate contribution to the response variance, widely used in the sensitivity analysis field, as opposed to the third term, whose value increases with dependence within covariates. Thus, we theoretically demonstrate that the mean decrease accuracy does not target the right quantity to detect influential covariates in a dependent setting, a fact that has already been noticed experimentally. To address this issue, we define a new importance measure for random forests, the Sobol-mean decrease accuracy, which fixes the flaws of the original mean decrease accuracy, and consistently estimates the accuracy decrease of the forest retrained without a given covariate, but with an efficient computational cost. The Sobol-mean decrease accuracy empirically outperforms its competitors on both simulated and real data for variable selection.

Keywords: MDA; Random forest; Sensitivity analysis; Sobol index; Variable importance; Variable selection (search for similar items in EconPapers)
Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asac017 (application/pdf)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:109:y:2022:i:4:p:881-900.

Ordering information: This journal article can be ordered from
https://academic.oup.com/journals

Access Statistics for this article

Biometrika is currently edited by Paul Fearnhead

More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().

 
Page updated 2025-03-19
Handle: RePEc:oup:biomet:v:109:y:2022:i:4:p:881-900.