Graphical Gaussian process models for highly multivariate spatial data
Cross-covariance functions for multivariate random fields based on latent dimensions
Debangan Dey,
Abhirup Datta and
Sudipto Banerjee
Biometrika, 2022, vol. 109, issue 4, 993-1014
Abstract:
SummaryFor multivariate spatial Gaussian process models, customary specifications of cross-covariance functions do not exploit relational inter-variable graphs to ensure process-level conditional independence between the variables. This is undesirable, especially in highly multivariate settings, where popular cross-covariance functions, such as multivariate Matérn functions, suffer from a curse of dimensionality as the numbers of parameters and floating-point operations scale up in quadratic and cubic order, respectively, with the number of variables. We propose a class of multivariate graphical Gaussian processes using a general construction called stitching that crafts cross-covariance functions from graphs and ensures process-level conditional independence between variables. For the Matérn family of functions, stitching yields a multivariate Gaussian process whose univariate components are Matérn Gaussian processes, and which conforms to process-level conditional independence as specified by the graphical model. For highly multivariate settings and decomposable graphical models, stitching offers massive computational gains and parameter dimension reduction. We demonstrate the utility of the graphical Matérn Gaussian process to jointly model highly multivariate spatial data using simulation examples and an application to air-pollution modelling.
Keywords: Conditional independence; Covariance selection; Graphical model; Matérn Gaussian process (search for similar items in EconPapers)
Date: 2022
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asab061 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:109:y:2022:i:4:p:993-1014.
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().