Subsampling sparse graphons under minimal assumptions
Robert Lunde and
Purnamrita Sarkar
Biometrika, 2023, vol. 110, issue 1, 15-32
Abstract:
SummaryWe study the properties of two subsampling procedures for networks, vertex subsampling and $p$-subsampling, under the sparse graphon model. The consistency of network subsampling is demonstrated under the minimal assumptions of weak convergence of the corresponding network statistics and an expected subsample size growing to infinity more slowly than the number of vertices in the network. Furthermore, under appropriate sparsity conditions, we derive limiting distributions for the nonzero eigenvalues of an adjacency matrix under the sparse graphon model. Our weak convergence result implies the consistency of our subsampling procedures for eigenvalues under appropriate conditions.
Keywords: Eigenvalue; Network; Sparse graphon; Subsampling; Weak convergence (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asac032 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:110:y:2023:i:1:p:15-32.
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().