EconPapers    
Economics at your fingertips  
 

Robust differential abundance test in compositional data

Shulei Wang

Biometrika, 2023, vol. 110, issue 1, 169-185

Abstract: SummaryDifferential abundance tests for compositional data are essential and fundamental in various biomedical applications, such as single-cell, bulk RNA-seq and microbiome data analysis. However, because of the compositional constraint and the prevalence of zero counts in the data, differential abundance analysis on compositional data remains a complicated and unsolved statistical problem. This article proposes a new differential abundance test, the robust differential abundance test, to address these challenges. Compared with existing methods, the robust differential abundance test is simple and computationally efficient, is robust to prevalent zero counts in compositional datasets, can take the data’s compositional nature into account, and has a theoretical guarantee of controlling false discoveries in a general setting. Furthermore, in the presence of observed covariates, the robust differential abundance test can work with covariate-balancing techniques to remove potential confounding effects and draw reliable conclusions. The proposed test is applied to several numerical examples, and its merits are demonstrated using both simulated and real datasets.

Keywords: Compositional data; Covariate balancing; Differential abundance test; Multiple testing (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asac029 (application/pdf)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:110:y:2023:i:1:p:169-185.

Ordering information: This journal article can be ordered from
https://academic.oup.com/journals

Access Statistics for this article

Biometrika is currently edited by Paul Fearnhead

More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().

 
Page updated 2025-03-19
Handle: RePEc:oup:biomet:v:110:y:2023:i:1:p:169-185.