Response best-subset selector for multivariate regression with high-dimensional response variables
Jianhua Hu,
Jian Huang,
Xiaoqian Liu and
Xu Liu
Biometrika, 2023, vol. 110, issue 1, 205-223
Abstract:
SummaryThis article investigates the statistical problem of response-variable selection with high-dimensional response variables and a diverging number of predictor variables with respect to the sample size in the framework of multivariate linear regression. A response best-subset selection model is proposed by introducing a 0-1 selection indicator for each response variable, and then a response best-subset selector is developed by introducing a separation parameter and a novel penalized least-squares function. The proposed procedure can perform response-variable selection and regression-coefficient estimation simultaneously, and the response best-subset selector has the property of model consistency under mild conditions for both fixed and diverging numbers of predictor variables. Also, consistency and asymptotic normality of regression-coefficient estimators are established for cases with a fixed dimension, and it is found that the Bonferroni test is a special response best-subset selector. Finite-sample simulations show that the response best-subset selector has strong advantages over existing competitors in terms of the Matthews correlation coefficient, a criterion that aims to balance accuracies for both true and false response variables. An analysis of real data demonstrates the effectiveness of the response best-subset selector in an application involving the identification of dosage-sensitive genes.
Keywords: High dimensionality; Mixed 0-1 integer optimization; Multivariate linear regression; Penalized least-squares function; Response best-subset selector; Response-variable selection (search for similar items in EconPapers)
Date: 2023
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asac037 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:110:y:2023:i:1:p:205-223.
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().