EconPapers    
Economics at your fingertips  
 

Hug and hop: a discrete-time, nonreversible Markov chain Monte Carlo algorithm

M Ludkin and C Sherlock

Biometrika, 2023, vol. 110, issue 2, 301-318

Abstract: SummaryThis article introduces the hug and hop Markov chain Monte Carlo algorithm for estimating expectations with respect to an intractable distribution. The algorithm alternates between two kernels, referred to as hug and hop. Hug is a nonreversible kernel that repeatedly applies the bounce mechanism from the recently proposed bouncy particle sampler to produce a proposal point that is far from the current position yet on almost the same contour of the target density, leading to a high acceptance probability. Hug is complemented by hop, which deliberately proposes jumps between contours and has an efficiency that degrades very slowly with increasing dimension. There are many parallels between hug and Hamiltonian Monte Carlo using a leapfrog integrator, including the order of the integration scheme, but hug is also able to make use of local Hessian information without requiring implicit numerical integration steps, and its performance is not terminally affected by unbounded gradients of the log-posterior. We test hug and hop empirically on a variety of toy targets and real statistical models, and find that it can, and often does, outperform Hamiltonian Monte Carlo.

Keywords: Bouncy particle sampler; Markov chain Monte Carlo; Nonreversible sampler; Scaling limit (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asac039 (application/pdf)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:110:y:2023:i:2:p:301-318.

Ordering information: This journal article can be ordered from
https://academic.oup.com/journals

Access Statistics for this article

Biometrika is currently edited by Paul Fearnhead

More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().

 
Page updated 2025-03-19
Handle: RePEc:oup:biomet:v:110:y:2023:i:2:p:301-318.