EconPapers    
Economics at your fingertips  
 

Kernel two-sample tests in high dimensions: interplay between moment discrepancy and dimension-and-sample orders

Jian Yan and Xianyang Zhang

Biometrika, 2023, vol. 110, issue 2, 411-430

Abstract: SummaryMotivated by the increasing use of kernel-based metrics for high-dimensional and large-scale data, we study the asymptotic behaviour of kernel two-sample tests when the dimension and sample sizes both diverge to infinity. We focus on the maximum mean discrepancy using an isotropic kernel, which includes maximum mean discrepancy with the Gaussian kernel and the Laplace kernel, and the energy distance as special cases. We derive asymptotic expansions of the kernel two-sample statistics, based on which we establish a central limit theorem under both the null hypothesis and the local and fixed alternatives. The new nonnull central limit theorem results allow us to perform asymptotic exact power analysis, which reveals a delicate interplay between the moment discrepancy that can be detected by the kernel two-sample tests and the dimension-and-sample orders. The asymptotic theory is further corroborated through numerical studies.

Keywords: High dimensionality; Kernel method; Power analysis; Two-sample testing (search for similar items in EconPapers)
Date: 2023
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asac049 (application/pdf)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:110:y:2023:i:2:p:411-430.

Ordering information: This journal article can be ordered from
https://academic.oup.com/journals

Access Statistics for this article

Biometrika is currently edited by Paul Fearnhead

More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().

 
Page updated 2025-03-19
Handle: RePEc:oup:biomet:v:110:y:2023:i:2:p:411-430.