Design-based theory for cluster rerandomization
Xin Lu,
Tianle Liu,
Hanzhong Liu and
Peng Ding
Biometrika, 2023, vol. 110, issue 2, 467-483
Abstract:
SummaryComplete randomization balances covariates on average, but covariate imbalance often exists in finite samples. Rerandomization can ensure covariate balance in the realized experiment by discarding the undesired treatment assignments. Many field experiments in public health and social sciences assign the treatment at the cluster level due to logistical constraints or policy considerations. Moreover, they are frequently combined with re-randomization in the design stage. We define cluster rerandomization as a cluster-randomized experiment compounded with rerandomization to balance covariates at the individual or cluster level. Existing asymptotic theory can only deal with rerandomization with treatments assigned at the individual level, leaving that for cluster rerandomization an open problem. To fill the gap, we provide a design-based theory for cluster rerandomization. Moreover, we compare two cluster rerandomization schemes that use prior information on the importance of the covariates: one based on the weighted Euclidean distance and the other based on the Mahalanobis distance with tiers of covariates. We demonstrate that the former dominates the latter with optimal weights and orthogonalized covariates. Last but not least, we discuss the role of covariate adjustment in the analysis stage, and recommend covariate-adjusted procedures that can be conveniently implemented by least squares with the associated robust standard errors.
Keywords: Cluster randomization; Cluster-robust standard error; Constrained randomization; Covariate balance (search for similar items in EconPapers)
Date: 2023
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asac045 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:110:y:2023:i:2:p:467-483.
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().