Optimal row-column designs
Zheng Zhou and
Yongdao Zhou
Biometrika, 2023, vol. 110, issue 2, 537-549
Abstract:
SummaryRow-column designs have been widely used in experiments involving double confounding. Among them, one that provides unconfounded estimation of all main effects and as many two-factor interactions as possible is preferred, and is called optimal. Most current work focuses on the construction of two-level row-column designs, while the corresponding optimality theory has been largely ignored. Moreover, most constructed designs contain at least one replicate of a full factorial design, which is not flexible as the number of factors increases. In this study, a theoretical framework is built up to evaluate the optimality of row-column designs with prime level. A method for constructing optimal row-column designs with prime level is proposed. Subsequently, optimal full factorial three-level row-column designs are constructed for any parameter combination. Optimal fractional factorial two-level and three-level row-column designs are also constructed for cost saving.
Keywords: Confounding; Factorial design; Interaction; Row-column design (search for similar items in EconPapers)
Date: 2023
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asac046 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:110:y:2023:i:2:p:537-549.
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().