High-dimensional analysis of variance in multivariate linear regression
Zhipeng Lou,
Xianyang Zhang and
Wei Biao Wu
Biometrika, 2023, vol. 110, issue 3, 777-797
Abstract:
SummaryIn this paper, we develop a systematic theory for high-dimensional analysis of variance in multivariate linear regression, where the dimension and the number of coefficients can both grow with the sample size. We propose a new U-type statistic to test linear hypotheses and establish a high-dimensional Gaussian approximation result under fairly mild moment assumptions. Our general framework and theory can be used to deal with the classical one-way multivariate analysis of variance, and the nonparametric one-way multivariate analysis of variance in high dimensions. To implement the test procedure, we introduce a sample-splitting-based estimator of the second moment of the error covariance and discuss its properties. A simulation study shows that our proposed test outperforms some existing tests in various settings.
Keywords: Data-splitting, Gaussian approximation, Multivariate analysis of variance, One-way layout; U statistic (search for similar items in EconPapers)
Date: 2023
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asad001 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:110:y:2023:i:3:p:777-797.
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().