EconPapers    
Economics at your fingertips  
 

Ancestor regression in linear structural equation models

C Schultheiss and P Bühlmann

Biometrika, 2023, vol. 110, issue 4, 1117-1124

Abstract: SummaryWe present a new method for causal discovery in linear structural equation models. We propose a simple technique based on statistical testing in linear models that can distinguish between ancestors and non-ancestors of any given variable. Naturally, this approach can then be extended to estimating the causal order among all variables. We provide explicit error control for false causal discovery, at least asymptotically. This holds true even under Gaussianity, where other methods fail due to non-identifiable structures. These Type I error guarantees come at the cost of reduced power. Additionally, we provide an asymptotically valid goodness-of-fit p-value for assessing whether multivariate data stem from a linear structural equation model.

Keywords: Causal inference; LiNGAM; Structural equation model (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asad008 (application/pdf)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:110:y:2023:i:4:p:1117-1124.

Ordering information: This journal article can be ordered from
https://academic.oup.com/journals

Access Statistics for this article

Biometrika is currently edited by Paul Fearnhead

More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().

 
Page updated 2025-03-19
Handle: RePEc:oup:biomet:v:110:y:2023:i:4:p:1117-1124.