Targeted optimal treatment regime learning using summary statistics
J Chu,
W Lu and
S Yang
Biometrika, 2023, vol. 110, issue 4, 913-931
Abstract:
SummaryPersonalized decision-making, aiming to derive optimal treatment regimes based on individual characteristics, has recently attracted increasing attention in many fields, such as medicine, social services and economics. Current literature mainly focuses on estimating treatment regimes from a single source population. In real-world applications, the distribution of a target population can be different from that of the source population. Therefore, treatment regimes learned by existing methods may not generalize well to the target popu- lation. Because of privacy concerns and other practical issues, individual-level data from the target population are often not available, which makes treatment regime learning more challenging. We consider the problem of treatment regime estimation when the source and target populations may be heterogeneous, individual-level data are available from the source population and only the summary information of covariates, such as moments, is accessible from the target population. We develop a weighting framework that tailors a treatment regime for a given target population by leveraging the available summary statistics. Specifically, we propose a calibrated augmented inverse probability weighted estimator of the value function for the target population and estimate an optimal treatment regime by maximizing this estimator within a class of prespecified regimes. We show that the proposed calibrated estimator is consistent and asymptotically normal even with flexible semi/nonparametric models for nuisance function approximation, and that the variance of the value estimator can be consistently estimated. We demonstrate the empirical performance of the proposed method using simulation studies and a real application using two datasets on sepsis.
Keywords: Covariate shift; Double robustness; Empirical likelihood; Entropy balancing; Multisource policy learning (search for similar items in EconPapers)
Date: 2023
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asad020 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:110:y:2023:i:4:p:913-931.
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().