EconPapers    
Economics at your fingertips  
 

Proximal mediation analysis

Oliver Dukes, Ilya Shpitser and Eric J Tchetgen

Biometrika, 2023, vol. 110, issue 4, 973-987

Abstract: SummaryA common concern when trying to draw causal inferences from observational data is that the measured covariates are insufficiently rich to account for all sources of confounding. In practice, many of the covariates may only be proxies of the latent confounding mechanism. Recent work has shown that in certain settings where the standard no-unmeasured-confounding assumption fails, proxy variables can be leveraged to identify causal effects. Results currently exist for the total causal effect of an intervention, but little consideration has been given to learning about the direct or indirect pathways of the effect through a mediator variable. In this work, we describe three separate proximal identification results for natural direct and indirect effects in the presence of unmeasured confounding. We then develop a semiparametric framework for inference on natural direct and indirect effects, which leads us to locally efficient, multiply robust estimators.

Keywords: Causal inference; Mediation; Semiparametric inference; Unmeasured confounding (search for similar items in EconPapers)
Date: 2023
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asad015 (application/pdf)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:110:y:2023:i:4:p:973-987.

Ordering information: This journal article can be ordered from
https://academic.oup.com/journals

Access Statistics for this article

Biometrika is currently edited by Paul Fearnhead

More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().

 
Page updated 2025-03-19
Handle: RePEc:oup:biomet:v:110:y:2023:i:4:p:973-987.