One-step targeted maximum likelihood estimation for targeting cause-specific absolute risks and survival curves
H C W Rytgaard and
M J van der Laan
Biometrika, 2024, vol. 111, issue 1, 129-145
Abstract:
SummaryThis paper considers the one-step targeted maximum likelihood estimation methodology for multi-dimensional causal parameters in general survival and competing risk settings where event times take place on the positive real line and are subject to right censoring. We focus on effects of baseline treatment decisions possibly confounded by pretreatment covariates, but remark that our work generalizes to settings with time-varying treatment regimes and time-dependent confounding. We point out two overall contributions of our work. First, our methods can be used to obtain simultaneous inference for treatment effects on multiple absolute risks in competing risk settings. Second, our methods can be used to achieve inference for the full survival curve, or a full absolute risk curve, across time. The one-step targeted maximum likelihood procedure is based on a one-dimensional universal least favourable submodel for each cause-specific hazard that we implement in recursive steps along a corresponding nonuniversal multivariate least favourable submodel. Our empirical study demonstrates the practical use of the methods.
Keywords: Average treatment effect; Competing risks; Semiparametric efficiency; Survival analysis; Targeted maximum likelihood estimation (search for similar items in EconPapers)
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asad033 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:111:y:2024:i:1:p:129-145.
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().