EconPapers    
Economics at your fingertips  
 

A cross-validation-based statistical theory for point processes

Ottmar Cronie, Mehdi Moradi and Christophe A N Biscio

Biometrika, 2024, vol. 111, issue 2, 625-641

Abstract: Motivated by the general ability of cross-validation to reduce overfitting and mean square error, we develop a cross-validation-based statistical theory for general point processes. It is based on the combination of two novel concepts for general point processes: cross-validation and prediction errors. Our cross-validation approach uses thinning to split a point process/pattern into pairs of training and validation sets, while our prediction errors measure discrepancy between two point processes. The new statistical approach, which may be used to model different distributional characteristics, exploits the prediction errors to measure how well a given model predicts validation sets using associated training sets. Having indicated that our new framework generalizes many existing statistical approaches, we then establish different theoretical properties for it, including large sample properties. We further recognize that nonparametric intensity estimation is an instance of Papangelou conditional intensity estimation, which we exploit to apply our new statistical theory to kernel intensity estimation. Using independent thinning-based cross-validation, we numerically show that the new approach substantially outperforms the state-of-the-art in bandwidth selection. Finally, we carry out intensity estimation for a dataset in forestry and a dataset in neurology.

Keywords: Kernel intensity estimation; Papangelou conditional intensity; Prediction; Spatial statistics; Thinning (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asad041 (application/pdf)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:111:y:2024:i:2:p:625-641.

Ordering information: This journal article can be ordered from
https://academic.oup.com/journals

Access Statistics for this article

Biometrika is currently edited by Paul Fearnhead

More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().

 
Page updated 2025-03-19
Handle: RePEc:oup:biomet:v:111:y:2024:i:2:p:625-641.