On the optimality of score-driven models
P Gorgi,
C S A Lauria and
A Luati
Biometrika, 2024, vol. 111, issue 3, 865-880
Abstract:
SummaryScore-driven models have recently been introduced as a general framework to specify time-varying parameters of conditional densities. The score enjoys stochastic properties that make these models easy to implement and convenient to apply in several contexts, ranging from biostatistics to finance. Score-driven parameter updates have been shown to be optimal in terms of locally reducing a local version of the Kullback–Leibler divergence between the true conditional density and the postulated density of the model. A key limitation of such an optimality property is that it holds only locally both in the parameter space and sample space, yielding to a definition of local Kullback–Leibler divergence that is in fact not a divergence measure. The current paper shows that score-driven updates satisfy stronger optimality properties that are based on a global definition of Kullback–Leibler divergence. In particular, it is shown that score-driven updates reduce the distance between the expected updated parameter and the pseudo-true parameter. Furthermore, depending on the conditional density and the scaling of the score, the optimality result can hold globally over the parameter space, which can be viewed as a generalization of the monotonicity property of the stochastic gradient descent scheme. Several examples illustrate how the results derived in the paper apply to specific models under different easy-to-check assumptions, and provide a formal method to select the link function and the scaling of the score.
Keywords: Kullback–Leibler divergence; Pseudo-true parameter; Score-driven model (search for similar items in EconPapers)
Date: 2024
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asad067 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:111:y:2024:i:3:p:865-880.
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().