EconPapers    
Economics at your fingertips  
 

Network community detection using higher-order structures

X Yu and J Zhu

Biometrika, 2024, vol. 111, issue 3, 903-923

Abstract: SummaryIn many real-world networks, it is often observed that subgraphs or higher-order structures of certain configurations, e.g., triangles and by-fans, are overly abundant compared to standard randomly generated networks (Milo et al., 2002). However, statistical models accounting for this phenomenon are limited, especially when community structure is of interest. This limitation is coupled with a lack of community detection methods that leverage subgraphs or higher-order structures. In this paper, we propose a new community detection method that effectively uses higher-order structures in a network. Furthermore, for the community detection accuracy, under an edge-dependent network model that consists of both community and triangle structures, we develop a finite-sample error bound characterized by the expected triangle degree, which leads to the consistency of the proposed method. To the best of our knowledge, this is the first statistical error bound and consistency result for community detection of a single network considering a network model with dependent edges. We also show, in both simulation studies and a real-world data example, that our method unveils network communities that are otherwise invisible to methods that ignore higher-order structures.

Keywords: Community detection; Consistency; Dependent edge; Network analysis; Subgraph (search for similar items in EconPapers)
Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asae014 (application/pdf)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:111:y:2024:i:3:p:903-923.

Ordering information: This journal article can be ordered from
https://academic.oup.com/journals

Access Statistics for this article

Biometrika is currently edited by Paul Fearnhead

More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().

 
Page updated 2025-03-19
Handle: RePEc:oup:biomet:v:111:y:2024:i:3:p:903-923.