EconPapers    
Economics at your fingertips  
 

Maximum likelihood estimation for semiparametric regression models with interval-censored multistate data

Yu Gu, Donglin Zeng, Gerardo Heiss and D Y Lin

Biometrika, 2024, vol. 111, issue 3, 971-988

Abstract: SummaryInterval-censored multistate data arise in many studies of chronic diseases, where the health status of a subject can be characterized by a finite number of disease states and the transition between any two states is only known to occur over a broad time interval. We relate potentially time-dependent covariates to multistate processes through semiparametric proportional intensity models with random effects. We study nonparametric maximum likelihood estimation under general interval censoring and develop a stable expectation-maximization algorithm. We show that the resulting parameter estimators are consistent and that the finite-dimensional components are asymptotically normal with a covariance matrix that attains the semiparametric efficiency bound and can be consistently estimated through profile likelihood. In addition, we demonstrate through extensive simulation studies that the proposed numerical and inferential procedures perform well in realistic settings. Finally, we provide an application to a major epidemiologic cohort study.

Keywords: EM algorithm; Multistate model; Nonparametric likelihood; Proportional intensity; Random effect; Semiparametric efficiency; Time-dependent covariate; Transition probability (search for similar items in EconPapers)
Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asad073 (application/pdf)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:111:y:2024:i:3:p:971-988.

Ordering information: This journal article can be ordered from
https://academic.oup.com/journals

Access Statistics for this article

Biometrika is currently edited by Paul Fearnhead

More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().

 
Page updated 2025-03-19
Handle: RePEc:oup:biomet:v:111:y:2024:i:3:p:971-988.