EconPapers    
Economics at your fingertips  
 

With random regressors, least squares inference is robust to correlated errors with unknown correlation structure

Zifeng Zhang, Peng Ding, Wen Zhou and Haonan Wang

Biometrika, 2025, vol. 112, issue 1, 1-35

Abstract: Linear regression is arguably the most widely used statistical method. With fixed regressors and correlated errors, the conventional wisdom is to modify the variance-covariance estimator to accommodate the known correlation structure of the errors. We depart from existing literature by showing that with random regressors, linear regression inference is robust to correlated errors with unknown correlation structure. The existing theoretical analyses for linear regression are no longer valid because even the asymptotic normality of the least squares coefficients breaks down in this regime. We first prove the asymptotic normality of the t statistics by establishing their Berry–Esseen bounds based on a novel probabilistic analysis of self-normalized statistics. We then study the local power of the corresponding t tests and show that, perhaps surprisingly, error correlation can even enhance power in the regime of weak signals. Overall, our results show that linear regression is applicable more broadly than the conventional theory suggests, and they further demonstrate the value of randomization for ensuring robustness of inference.

Keywords: Asymptotic normality; Linear regression; Random design; Randomization (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asae054 (application/pdf)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:112:y:2025:i:1:p:1-35.

Ordering information: This journal article can be ordered from
https://academic.oup.com/journals

Access Statistics for this article

Biometrika is currently edited by Paul Fearnhead

More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().

 
Page updated 2025-03-19
Handle: RePEc:oup:biomet:v:112:y:2025:i:1:p:1-35.