Estimating causal effects under non-individualistic treatments due to network entanglement
P Toulis,
A Volfovsky and
E M Airoldi
Biometrika, 2025, vol. 112, issue 1, 235-67
Abstract:
SummaryIn many observational studies, the treatment assignment mechanism is not individualistic, as it allows the probability of treatment of a unit to depend on quantities beyond the unit’s covariates. In such settings, unit treatments may be entangled in complex ways. In this article, we consider a particular instance of this problem where the treatments are entangled by a social network among units. For instance, when studying the effects of peer interaction on a social media platform, the treatment on a unit depends on the change of the interactions network over time. A similar situation is encountered in many economic studies, such as those examining the effects of bilateral trade partnerships on countries’ economic growth. The challenge in these settings is that individual treatments depend on a global network that may change in a way that is endogenous and cannot be manipulated experimentally. In this paper, we show that classical propensity score methods that ignore entanglement may lead to large bias and wrong inference of causal effects. We then propose a solution that involves calculating propensity scores by marginalizing over the network change. Under an appropriate ignorability assumption, this leads to unbiased estimates of the treatment effect of interest. We also develop a randomization-based inference procedure that takes entanglement into account. Under general conditions on network change, this procedure can deliver valid inference without explicitly modelling the network. We establish theoretical results for the proposed methods and illustrate their behaviour via simulation studies based on real-world network data. We also revisit a large-scale observational dataset on contagion of online user behaviour, showing that ignoring entanglement may inflate estimates of peer influence.
Keywords: Causal inference; Misspecification; Network; Non-individualistic assignment; Observational study; Peer influence; Propensity score; Randomization inference (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asae041 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:112:y:2025:i:1:p:235-67.
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().