Integer programming for learning directed acyclic graphs from nonidentifiable Gaussian models
Tong Xu,
Armeen Taeb,
Simge Küçükyavuz and
Ali Shojaie
Biometrika, 2025, vol. 112, issue 3, asaf032.
Abstract:
SummaryWe study the problem of learning directed acyclic graphs from continuous observational data, generated according to a linear Gaussian structural equation model. State-of-the-art structure learning methods for this setting have at least one of the following shortcomings: (i) they cannot provide optimality guarantees and can suffer from learning suboptimal models; (ii) they rely on the stringent assumption that the noise is homoscedastic, and hence the underlying model is fully identifiable. We overcome these shortcomings and develop a computationally efficient mixed-integer programming framework for learning medium-sized problems that accounts for arbitrary heteroscedastic noise. We present an early stopping criterion under which we can terminate the branch-and-bound procedure to achieve an asymptotically optimal solution and establish the consistency of this approximate solution. In addition, we show via numerical experiments that our method outperforms state-of-the-art algorithms and is robust to noise heteroscedasticity, whereas the performance of some competing methods deteriorates under strong violations of the identifiability assumption. The software implementation of our method is available as the Python package micodag.
Keywords: Bayesian network; Identifiability; Mixed-integer programming; Structural equation model (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asaf032 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:112:y:2025:i:3:p:asaf032.
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().