Using empirical likelihood methods to obtain range restricted weights in regression estimators for surveys
J. Chen
Biometrika, 2002, vol. 89, issue 1, 230-237
Abstract:
Design weights in surveys are often adjusted to accommodate auxiliary information and to meet pre-specified range restrictions, typically via some ad hoc algorithmic adjustment to a generalised regression estimator. In this paper, we present a simple solution to this problem using empirical likelihood methods or generalised regression. We first develop algorithms for computing empirical likelihood estimators and model-calibrated empirical likelihood estimators. The first algorithm solves the computational problem of the empirical likelihood method in general, both in survey and non-survey settings, and theoretically guarantees its convergence. The second exploits properties of the model-calibration method and is particularly simple. The algorithms are adapted for handling benchmark constraints and pre-specified range restrictions on the weight adjustments. Copyright Biometrika Trust 2002, Oxford University Press.
Date: 2002
References: Add references at CitEc
Citations: View citations in EconPapers (27)
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:89:y:2002:i:1:p:230-237
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().