EconPapers    
Economics at your fingertips  
 

Estimating and interpolating a Markov chain from aggregate data

B. A. Davis

Biometrika, 2002, vol. 89, issue 1, 95-110

Abstract: Given aggregated longitudinal data generated by a Markov chain, which may be nonhomogeneous, the problem considered is that of modelling, estimating and interpolating the logarithms of partial odds and hence the transition probabilities. By partial odds is meant the probability of a transition to another state divided by the probability of no transition. A result establishing asymptotic normality leads to vector weighted least squares estimation of parameterised partial odds using standard regression methods. It is shown how to obtain estimates of one-step transition probabilities from widely or irregularly spaced data. The methods are illustrated on an example concerning competing causes of death. Copyright Biometrika Trust 2002, Oxford University Press.

Date: 2002
References: Add references at CitEc
Citations: View citations in EconPapers (3)

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:89:y:2002:i:1:p:95-110

Ordering information: This journal article can be ordered from
https://academic.oup.com/journals

Access Statistics for this article

Biometrika is currently edited by Paul Fearnhead

More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().

 
Page updated 2025-03-19
Handle: RePEc:oup:biomet:v:89:y:2002:i:1:p:95-110