Modified estimating functions
Thomas A. Severini
Biometrika, 2002, vol. 89, issue 2, 333-343
Abstract:
In a parametric model the maximum likelihood estimator of a parameter of interest &psgr; may be viewed as the solution to the equation l′-sub-p(&psgr;) = 0, where l-sub-p denotes the profile loglikelihood function. It is well known that the estimating function l′-sub-p(&psgr;) is not unbiased and that this bias can, in some cases, lead to poor estimates of &psgr;. An alternative approach is to use the modified profile likelihood function, or an approximation to the modified profile likelihood function, which yields an estimating function that is approximately unbiased. In many cases, the maximum likelihood estimating functions are unbiased under more general assumptions than those used to construct the likelihood function, for example under first- or second-moment conditions. Although the likelihood function itself may provide valid estimates under moment conditions alone, the modified profile likelihood requires a full parametric model. In this paper, modifications to l′-sub-p(&psgr;) are presented that yield an approximately unbiased estimating function under more general conditions. Copyright Biometrika Trust 2002, Oxford University Press.
Date: 2002
References: Add references at CitEc
Citations: View citations in EconPapers (5)
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:89:y:2002:i:2:p:333-343
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().