EconPapers    
Economics at your fingertips  
 

On some models for multivariate binary variables parallel in complexity with the multivariate Gaussian distribution

D. R. Cox

Biometrika, 2002, vol. 89, issue 2, 462-469

Abstract: It is shown that both the simple form of the Rasch model for binary data and a generalisation are essentially equivalent to special dichotomised Gaussian models. In these the underlying Gaussian structure is of single factor form; that is, the correlations between the binary variables arise via a single underlying variable, called in psychometrics a latent trait. The implications for scoring of the binary variables are discussed, in particular regarding the scoring system as in effect estimating the latent trait. In particular, the role of the simple sum score, in effect the total number of 'successes', is examined. Relations with the principal component analysis of binary data are outlined and some connections with the quadratic exponential binary model are sketched. Copyright Biometrika Trust 2002, Oxford University Press.

Date: 2002
References: Add references at CitEc
Citations: View citations in EconPapers (5)

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:89:y:2002:i:2:p:462-469

Ordering information: This journal article can be ordered from
https://academic.oup.com/journals

Access Statistics for this article

Biometrika is currently edited by Paul Fearnhead

More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().

 
Page updated 2025-03-19
Handle: RePEc:oup:biomet:v:89:y:2002:i:2:p:462-469