Expected-posterior prior distributions for model selection
Jose M. Perez
Biometrika, 2002, vol. 89, issue 3, 491-512
Abstract:
We consider the problem of comparing parametric models using a Bayesian approach. A new method of developing prior distributions for the model parameters is presented, called the expected-posterior prior approach. The idea is to define the priors for all models from a common underlying predictive distribution, in such a way that the resulting priors are amenable to modern Markov chain Monte Carlo computational techniques. The approach has subjective Bayesian and default Bayesian implementations, and overcomes the most significant impediment to Bayesian model selection, that of ensuring that prior distributions for the various models are appropriately compatible. Copyright Biometrika Trust 2002, Oxford University Press.
Date: 2002
References: Add references at CitEc
Citations: View citations in EconPapers (7)
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:89:y:2002:i:3:p:491-512
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().