Bayesian nonparametric multiple imputation of partially observed data with ignorable nonresponse
Susan M. Paddock
Biometrika, 2002, vol. 89, issue 3, 529-538
Abstract:
We present a new, nonparametric Bayesian method for multiple imputation of partially observed data for which the pattern of missingness is arbitrary and the data are missing at random with ignorable nonresponse with respect to the model specification. Motivation for the method is provided, followed by an overview of Pólya trees and their application to multiple imputation, and a comparison of the new method to existing approaches is presented. The method is illustrated on a dataset of colleges and universities in the United States. Copyright Biometrika Trust 2002, Oxford University Press.
Date: 2002
References: Add references at CitEc
Citations: View citations in EconPapers (4)
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:89:y:2002:i:3:p:529-538
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().