EconPapers    
Economics at your fingertips  
 

Estimation in a semiparametric model for longitudinal data with unspecified dependence structure

Xuming He

Biometrika, 2002, vol. 89, issue 3, 579-590

Abstract: This paper considers an extension of M-estimators in semiparametric models for independent observations to the case of longitudinal data. We approximate the nonparametric function by a regression spline, and any M-estimation algorithm for the usual linear models can then be used to obtain consistent estimators of the model and valid large-sample inferences about the regression parameters without any specification of the error distribution and the covariance structure. Included as special cases are the analysis of the conditional mean and median functions for longitudinal data. Copyright Biometrika Trust 2002, Oxford University Press.

Date: 2002
References: Add references at CitEc
Citations: View citations in EconPapers (64)

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:89:y:2002:i:3:p:579-590

Ordering information: This journal article can be ordered from
https://academic.oup.com/journals

Access Statistics for this article

Biometrika is currently edited by Paul Fearnhead

More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().

 
Page updated 2025-03-19
Handle: RePEc:oup:biomet:v:89:y:2002:i:3:p:579-590