EconPapers    
Economics at your fingertips  
 

Comparing nonnested Cox models

J. P. Fine

Biometrika, 2002, vol. 89, issue 3, 635-648

Abstract: We derive the limiting distribution of the partial likelihood ratio under general conditions. The multiplicative hazards models being fitted may be nonnested and misspecified. The true model is not assumed to contain either model under consideration. The null hypothesis is that the models are equidistant in Kullback--Leibler metric applied to the rank likelihood. The statistic is consistent for the model which is closer to the truth. Its distribution depends on the unknown data-generating mechanism. A sequential testing procedure is proposed for nonnested comparisons which is valid regardless of the true model. This involves a novel statistic for the equality of the fitted models which is separate from the partial likelihood. The methodology has important applications in model assessment. Simulations and a real example demonstrate its utility in selecting the functional forms of covariates and relative risks. Copyright Biometrika Trust 2002, Oxford University Press.

Date: 2002
References: Add references at CitEc
Citations: View citations in EconPapers (4)

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:89:y:2002:i:3:p:635-648

Ordering information: This journal article can be ordered from
https://academic.oup.com/journals

Access Statistics for this article

Biometrika is currently edited by Paul Fearnhead

More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().

 
Page updated 2025-03-19
Handle: RePEc:oup:biomet:v:89:y:2002:i:3:p:635-648