An efficient design for model discrimination and parameter estimation in linear models
Atanu Biswas
Biometrika, 2002, vol. 89, issue 3, 709-718
Abstract:
We consider experimental designs in a regression set-up where the unknown regression function belongs to a known family of nested linear models. The objective of our design is to select the correct model from the family of nested models as well as to estimate efficiently the parameters associated with that model. We show that our proposed design is able to choose the true model with probability tending to one as the number of trials grows to infinity. We also establish that our selected design converges to the optimal design distribution for the true linear model ensuring asymptotic efficiency of least squares estimators of model parameters. Copyright Biometrika Trust 2002, Oxford University Press.
Date: 2002
References: Add references at CitEc
Citations: View citations in EconPapers (3)
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:89:y:2002:i:3:p:709-718
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().