EconPapers    
Economics at your fingertips  
 

An efficient design for model discrimination and parameter estimation in linear models

Atanu Biswas

Biometrika, 2002, vol. 89, issue 3, 709-718

Abstract: We consider experimental designs in a regression set-up where the unknown regression function belongs to a known family of nested linear models. The objective of our design is to select the correct model from the family of nested models as well as to estimate efficiently the parameters associated with that model. We show that our proposed design is able to choose the true model with probability tending to one as the number of trials grows to infinity. We also establish that our selected design converges to the optimal design distribution for the true linear model ensuring asymptotic efficiency of least squares estimators of model parameters. Copyright Biometrika Trust 2002, Oxford University Press.

Date: 2002
References: Add references at CitEc
Citations: View citations in EconPapers (3)

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:89:y:2002:i:3:p:709-718

Ordering information: This journal article can be ordered from
https://academic.oup.com/journals

Access Statistics for this article

Biometrika is currently edited by Paul Fearnhead

More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().

 
Page updated 2025-03-19
Handle: RePEc:oup:biomet:v:89:y:2002:i:3:p:709-718