Estimation of nonstationary spatial covariance structure
David J. Nott
Biometrika, 2002, vol. 89, issue 4, 819-829
Abstract:
We introduce a method for estimating nonstationary spatial covariance structure from space-time data and apply the method to an analysis of Sydney wind patterns. Our method constructs a process honouring a given spatial covariance matrix at observing stations and uses one or more stationary processes to describe conditional behaviour given observing site values. The stationary processes give a localised description of the spatial covariance structure. The method is computationally attractive, and can be extended to the assessment of covariance for multivariate processes. The technique is illustrated for data describing the east-west component of Sydney winds. For this example, our own methods are contrasted with a geometrically appealing though computationally intensive technique which describes spatial correlation via an isotropic process and a deformation of the geographical space. Copyright Biometrika Trust 2002, Oxford University Press.
Date: 2002
References: Add references at CitEc
Citations: View citations in EconPapers (4)
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:89:y:2002:i:4:p:819-829
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().