Additive hazards models with latent treatment effectiveness lag time
Y. Q. Chen
Biometrika, 2002, vol. 89, issue 4, 917-931
Abstract:
In many clinical trials for evaluating treatment efficacy, it is believed that there may exist latent treatment effectiveness lag times after which medical treatment procedure or chemical compound would be in full effect. In this paper, semiparametric regression models are proposed and studied for estimating the treatment effect accounting for such latent lag times. The new models take advantage of the invariant property of the additive hazards model in marginalising over an additive latent variable; parameters in the models are thus easily estimated and interpreted, while the flexibility of not having to specify the baseline hazard function is preserved. Monte Carlo simulation studies demonstrate the appropriateness of the proposed semiparametric estimation procedure. The methodology is applied to data collected in a randomised clinical trial, which evaluates the efficacy of biodegradable carmustine polymers for treatment of recurrent brain tumours. Copyright Biometrika Trust 2002, Oxford University Press.
Date: 2002
References: Add references at CitEc
Citations: View citations in EconPapers (2)
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:89:y:2002:i:4:p:917-931
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().