Nonparametric estimation in nonlinear mixed effects models
Tze Leung Lai
Biometrika, 2003, vol. 90, issue 1, 1-13
Abstract:
A nonparametric approach is developed herein to estimate parameters in nonlinear mixed effects models. Asymptotic properties of the nonparametric maximum likelihood estimators and associated computational algorithms are provided. Empirical Bayes estimators of functionals of the random effects are also developed. Applications to population pharmacokinetics are given. Copyright Biometrika Trust 2003, Oxford University Press.
Date: 2003
References: Add references at CitEc
Citations: View citations in EconPapers (6)
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:90:y:2003:i:1:p:1-13
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().