EconPapers    
Economics at your fingertips  
 

A dependence measure for multivariate and spatial extreme values: Properties and inference

Martin Schlather

Biometrika, 2003, vol. 90, issue 1, 139-156

Abstract: We present properties of a dependence measure that arises in the study of extreme values in multivariate and spatial problems. For multivariate problems the dependence measure characterises dependence at the bivariate level, for all pairs and all higher orders up to and including the dimension of the variable. Necessary and sufficient conditions are given for subsets of dependence measures to be self-consistent, that is to guarantee the existence of a distribution with such a subset of values for the dependence measure. For pairwise dependence, these conditions are given in terms of positive semidefinite matrices and non-differentiable, positive definite functions. We construct new nonparametric estimators for the dependence measure which, unlike all naive nonparametric estimators, impose these self-consistency properties. As the new estimators provide an improvement on the naive methods, both in terms of the inferential and interpretability properties, their use in exploratory extreme value analyses should aid the identification of appropriate dependence models. The methods are illustrated through an analysis of simulated multivariate data, which shows that a lack of self-consistency is frequently a problem with the existing estimators, and by a spatial analysis of daily rainfall extremes in south-west England, which finds a smooth decay in extremal dependence with distance. Copyright Biometrika Trust 2003, Oxford University Press.

Date: 2003
References: Add references at CitEc
Citations: View citations in EconPapers (30)

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:90:y:2003:i:1:p:139-156

Ordering information: This journal article can be ordered from
https://academic.oup.com/journals

Access Statistics for this article

Biometrika is currently edited by Paul Fearnhead

More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().

 
Page updated 2025-04-17
Handle: RePEc:oup:biomet:v:90:y:2003:i:1:p:139-156