Pattern-mixture models with proper time dependence
M. G. Kenward
Biometrika, 2003, vol. 90, issue 1, 53-71
Abstract:
Recently, pattern-mixture modelling has become a popular tool for modelling incomplete longitudinal data. Such models are under-identified in the sense that, for any drop-out pattern, the data provide no direct information on the distribution of the unobserved outcomes, given the observed ones. One simple way of overcoming this problem, ordinary extrapolation of sufficiently simple pattern-specific models, often produces rather unlikely descriptions; several authors consider identifying restrictions instead. Molenberghs et al. (1998) have constructed identifying restrictions corresponding to missing at random. In this paper, the family of restrictions where drop-out does not depend on future, unobserved observations is identified. The ideas are illustrated using a clinical study of Alzheimer patients. Copyright Biometrika Trust 2003, Oxford University Press.
Date: 2003
References: Add references at CitEc
Citations: View citations in EconPapers (9)
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:90:y:2003:i:1:p:53-71
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().